3.1



### Module 1

| Chapter 1: Trusses | 1-1 to 1-24 |
|--------------------|-------------|
|--------------------|-------------|

**Syllabus :** Analysis of Perfect Coplanar Trusses by Method of Joints, Analysis of Perfect Coplanar Trusses by Method of Sections.

| 1.1 | Truss                                                   | 1-1  |
|-----|---------------------------------------------------------|------|
| 1.2 | Uses of Truss                                           | 1-1  |
| 1.3 | Assumptions in Analysis of Pin-jointed  Perfect Trusses | 1-1  |
| 1.4 | Conditions of Perfect Truss                             | 1-1  |
| 1.5 | Method of Joints                                        | 1-2  |
| 1.6 | Method of Sections                                      | 1-3  |
| 1.7 | Comparison between Method of Joints                     |      |
|     | and Method of Sections                                  | 1-3  |
| 1.8 | Zero Force Members                                      | 1-16 |

#### Chapter 2: Three Hinged Arches 2-1 to 2-20

**Syllabus :** Determination of Normal Thrust, Radial shear and Bending Moment for Symmetrical and Unsymmetrical three hinged Parabolic Arches.

| 2.1 | Introduction2-1                             |
|-----|---------------------------------------------|
| 2.2 | Advantages and Disadvantages of an Arch2-1  |
| 2.3 | Three Hinged Parabolic Arch2-2              |
| 2.4 | Normal Thrust (Axial Force) and Radial      |
|     | Shear (Shear Force)2-2                      |
| 2.5 | University Theory Questions and Answers2-18 |
|     |                                             |

Module 2

# Chapter 3: Influence Line Diagrams and

Rolling Loads 3-1 to 3-27

**Syllabus :** Influence lines for reactions, Shear Force and Bending Moment at a section of Cantilever, Simplify Supported, Overhanging Beams without internal hinges. Rolling Loads, Determination of S.F. and B.M. at a section, value and criteria for maximum S.F. and B.M., Absolute maximum shear force and Bending moment under rolling loads (UDL and series of point loads) for simply supported girder.

| 3.2  | I.L.D. for Reactions in Simply                  |
|------|-------------------------------------------------|
|      | Supported Beam 3-1                              |
| 3.3  | I.L.D. for S.F. and B.M. in Simply              |
|      | Supported Beam3-2                               |
| 3.4  | I.L.D. for Reactions, S.F. and B.M. in          |
|      | Cantilever Beam3-4                              |
| 3.5  | I.L.D. for Reactions, S.F. and B. M. in         |
|      | Overhanging Beam with Overhangs                 |
|      | on Both Sides3-5                                |
| 3.6  | Maximum Bending Moment at a Section             |
|      | in Simply Supported Beam Carrying               |
|      | Moving u.d. <i>I.</i> 3-14                      |
| 3.7  | Maximum Bending Moment at a Section             |
|      | in Simply Supported Beam Supporting             |
|      | a Chain of Moving point Load3-16                |
| 3.8  | Maximum Bending Moment under                    |
|      | a Chosen Wheel Load3-18                         |
| 3.9  | Absolute Maximum Bending Moment on              |
|      | the Span Under Chain of Wheel Loads3-20         |
| 3.10 | Difference between S.F.D. and I.L.D. of S.F3-20 |
| 3.11 | University Theory Questions and Answers3-25     |
|      |                                                 |

Influence Line Diagram....

# Chapter 4 : Influence Line Diagrams of Trusses

Syllabus : I.L.D for axial forces in members of pin jointed



4-1 to 4-25

2



### Module 3

|            | (Strain Energy Method) | 5-1 to 5-21 |
|------------|------------------------|-------------|
| Chapter 5: | Slope and Deflection   |             |

**Syllabus :** Deflection of statically determinate structures, methods based on energy principles and Castigliano's theorems to evaluate deflection in portal frames, bent up and arch type structures.

| 5.1 | Strain Energy5-1                            |
|-----|---------------------------------------------|
| 5.2 | Strain Energy under Axial Loading5-1        |
| 5.3 | Strain Energy due to Bending5-1             |
| 5.4 | Strain Energy due to Shear5-2               |
| 5.5 | Strain Energy due to Torsion5-2             |
| 5.6 | Castigliano's First Theorem5-2              |
| 5.7 | University Theory Questions and Answers5-19 |

# Chapter 6 : Slope and Deflection (Unit Load Method) 6-1 to 6-19

**Syllabus :** Application of Unit Load Method for Calculating slope and deflection of a point on rigid jointed frames.

| 6.1 | Introduction6-1                              |
|-----|----------------------------------------------|
| 6.2 | Procedure6-1                                 |
| 6.3 | University Theory Questions and Answers 6-18 |

#### Chapter 7: Deflection of Trusses 7-1 to 7-15

**Syllabus :** Application of Unit Load Method for Calculating slope and deflection of a point on pin jointed truss.

| 7.1 | Unit Load Method                        | 7-1  |
|-----|-----------------------------------------|------|
| 7.2 | University Theory Questions and Answers | 7-13 |

#### Chapter 8: Determinacy and Indeterminacy 8-1 to 8-26

**Syllabus :** Static and Kinematic Indeterminacies : Types of structures occuring in practice, their classification, linear and non-linear behaviour of materials, geometric non-linearity, static and kinematic indeterminacy and indeterminacy of structures

| 8.1 | Types of Structures8-1                       |
|-----|----------------------------------------------|
| 8.2 | Equations of Static Equilibrium8-1           |
| 8.3 | Degree of Static Indeterminacy8-2            |
| 8.4 | Degree of Internal Indeterminacy in          |
|     | Hybrid Structures8-3                         |
| 8.5 | Degree of Kinematic Indeterminacy ( $D_k$ )  |
|     | or Degree of Freedom8-3                      |
| 8.6 | Stability8-4                                 |
| 8.7 | Complimentary Energy                         |
|     | (Linear and Non-linear Elastic Materials)8-5 |
| 8.8 | University Theory Questions and Answers8-23  |
|     | Module 4                                     |
|     | · · · · · · · · · · · · · · · · · · ·        |

# Chapter 9: Three Moment Theorem (Clapeyron's Theorem) 9-1 to 9-23

**Syllabus :** Analysis of fixed beam. Application of Clapeyron's theorem of three moments to fixed beam and continuous beam.

| 9.1 | Continuous Beam 9-1                         |
|-----|---------------------------------------------|
| 9.2 | Theorem of Three Moments (Derivation)9-1    |
| 9.3 | University Theory Questions and Answers9-21 |

#### Chapter 10: Flexibility Method 10-1 to 10-38

**Syllabus :** Flexibility coefficient and their use in formulation of compatibility equations. Application of flexibility method to propped cantilevers, fixed beams, continuous beams and simple rigid jointed frames.

| 10.1 | Flexibility Method10-1                       |
|------|----------------------------------------------|
| 10.2 | Flexibility10-1                              |
| 10.3 | University Theory Questions and Answers10-36 |

#### **Module 5**

#### Chapter 11: Stiffness Method 11-1 to 11-42

**Syllabus :** Stiffness coefficients for prismatic members and their use for formulation of equilibrium equations. Application of Direct Stiffness Method to indeterminate beams and simple rigid jointed frames.



|    |   | • |  |
|----|---|---|--|
|    | ī |   |  |
| ٠, | Y |   |  |
|    |   |   |  |

| 11.1 | Definition11-1                                                       |
|------|----------------------------------------------------------------------|
| 11.2 | Step by Step Procedure in Stiffness Method (Displacement Method)11-1 |
| 11.3 | Relation between Flexibility Matrix and                              |
|      | Stiffness Matrix11-2                                                 |
| 11.4 | Fixed End Moments (Formulae)11-2                                     |
| 11.5 | University Theory Questions and Answers11-40                         |
|      | Module 6                                                             |

### Chapter 12: Moment Distribution Method 12-1 to 12-41

**Syllabus :** Application to Intermediate Beams and simple Rigid Jointed Frames and Frames with inclined member but having only single translation degree of freedom including the effect of support settlement.

| 12.1   | Introduction12-1                                |
|--------|-------------------------------------------------|
| 12.2   | Sign Convention                                 |
| 12.3   | Carry Over Factor (C.O.F.)                      |
| 12.3.1 | Carry Over Factor for a Member with One End     |
|        | Fixed and Other Simply Supported or Hinged 12-1 |
| 12.3.2 | Carry Over Factor for a Member with Both        |
|        | Ends Simply Supported or Hinged12-2             |
| 12.4   | Stiffness Factor (Relative Stiffness) 12-3      |
| 12.5   | Distribution Factor12-3                         |
| 12.6   | Fixed End Moments (Formulae)12-4                |
| 12.7   | NON-SWAY Frames12-18                            |
| 12.8   | Frames with Sway12-23                           |
| 12.9   | University Theory Questions and Answers12-37    |

## Chapter 13: Plastic Analysis of Structures 13-1 to 13-32

**Syllabus :** Introduction to plastic analysis, concept of plastic hinge, plastic moment carrying capacity; shape factor, Static and kinematic method of plastic analysis. Determination of collapse load for single and multiple span beams.

| 13.1   | Elastic Method of Design/Working             |
|--------|----------------------------------------------|
|        | Stress Method13-1                            |
| 13.2   | Plastic Method/Ultimate Load Method13-1      |
| 13.2.1 | Working Loads13-1                            |
| 13.2.2 | Collapse Load/Ultimate Load13-1              |
| 13.2.3 | Load Factor13-1                              |
| 13.3   | Difference between Elastic and               |
|        | Plastic Analysis13-1                         |
| 13.4   | Ductility of Steel13-2                       |
| 13.5   | Plastic Bending of Beams13-2                 |
| 13.5.1 | Yield Moment13-3                             |
| 13.5.2 | Plastic Moment (M <sub>p</sub> )13-3         |
| 13.5.3 | Shape Factor (S)13-3                         |
| 13.5.4 | Plastic Neutral Axis (P.N.A.)13-3            |
| 13.6   | Shape Factors for Different Sections13-4     |
| 13.6.1 | Rectangular Section13-4                      |
| 13.6.2 | Circular Section13-4                         |
| 13.6.3 | Rhombus Section/Diamond Section13-4          |
| 13.6.4 | Triangular Section13-5                       |
| 13.6.5 | Square Section with Diagonal Horizontal13-5  |
| 13.7   | Plastic Hinge13-12                           |
| 13.8   | Mechanism13-12                               |
| 13.9   | Location of Plastic Hinges13-12              |
| 13.10  | Relation between Plastic Moment              |
|        | and Ultimate Load13-13                       |
| 13.11  | University Theory Questions and Answers13-29 |